1. The national implementation measures referred to in Article 9 of the Convention.

Although there is no national legislation specifically related to the Convention is available, the criminal code of the Republic of Moldova envisages penal sanctions for the storage, purchase, selling and use of weapons and ammunitions which also includes anti-personnel mines.

2. The total of all stockpiled anti-personnel mines owned or possessed by the National Army of the Republic of Moldova, or under its jurisdiction or control, to include a breakdown of the type, quantity and, if possible, lot numbers of each type of anti-personnel mine stockpiled.

Currently, for the purpose of personnel instruction and training the National Army of the Republic of Moldova has 249 remotely controlled anti-personnel mines of the following types:

- OZM-72 bounding fragmentation mines – 59 pieces;
- MON-50 fragmentation mines – 12 pieces;
- MON-100 mines – 178 pieces.

3. To the extent possible, the location of all mined areas that contain, or are suspected to contain, anti-personnel mines under the Republic of Moldova’s jurisdiction or control, to include as much detail as possible regarding the type and quantity of each type of anti-personnel mine in each mined area and when they were emplaced.

The minefields in the vicinity of the following communities – Cocieri, Chițcani, Copanca, installed by the military factions during the Transdniestrian conflict of 1992, except of that near community Pohrebea had been cleared. Afterwards, during the period of 04 May – 09 August 2000 this last minefield near the community Pohrebea was also successfully cleared by the engineer units of the Ministry of Defense. The total territory cleared out of mines near the community Pohrebea comprised as much as 85 hectares.

Presently, there are no mined areas on the national territory of the Republic of Moldova.
4. The types, quantities and, if possible, lot numbers of all anti-personnel mines retained or transferred for the development of and training in mine detection, mine clearance or mine destruction techniques, or transferred for the purpose of destruction, as well as the institutions authorized by a State Party to retain or transfer anti-personnel mines, in accordance with Article 3 of the Convention.

The National Army of the Republic of Moldova retains for the purpose of personnel instruction and training 249 remotely controlled anti-personnel mines of the following types:

- OZM-72 bounding fragmentation mines – 59 pieces;
- MON-50 fragmentation mines – 12 pieces;
- MON-100 mines – 178 pieces.

5. The status of programs for the conversion or de-commissioning of anti-personnel mine production facilities.

Since the Republic of Moldova does not produce anti-personnel mines, no programs for the conversion or de-commissioning of anti-personnel mine production facilities exist.

6. The status of programs for the destruction of anti-personnel mines in accordance with Articles 4 and 5 of the Convention, including details of the methods which will be used in destruction, the location of all destruction sites and the applicable safety and environmental standards to be observed.

In the future, 249 remotely controlled anti-personnel mines presently retained by the National Army of the Republic of Moldova will also be destroyed. This amount of mines is planned to be destroyed by electric method with respect of all safety measures and environmental standards.

7. The types and quantities of all anti-personnel mines destroyed after the entry into force of this Convention for the Republic of Moldova, to include a breakdown of the quantity of each type of anti-personnel mine destroyed, in accordance with Articles 4 and 5, respectively, along with, if possible, the lot numbers of each type of anti-personnel mine in the case of destruction in accordance with Article 4.

On 28 June 2001, the Republic of Moldova and NATO signed an agreement for assistance in the destruction of the mine stockpiles. The agreement envisaged the providing of material assistance and training by the NATO’s Maintenance and Supply Agency (NAMSA) for the implementation of the project.
Within the period of 23 September – 26 November 2002 the National Army of the Republic of Moldova had destroyed its stockpiles of anti-personnel mines:

PMN blast mines – 9,792 pieces;
PMN-2 blast mines – 800 pieces;
MAI-75 blast mines – 544 pieces.

At the same period, the National Army of the Republic of Moldova had destroyed the following number of anti-personnel mines which belonged to the Ministry of Internal Affairs:

MAI-75 blast mines – 2,056 pieces;
MON-100 fragmentation mines – 2 pieces.

During the year of 2004 the National Army of the Republic of Moldova destroyed the following number of its anti-personnel mines:

PMN blast mines – 200 pieces;
PMN-2 blast mines – 136 pieces;
MAI-75 blast mines – 400 pieces,

The total number of anti-personnel mines destroyed by the Republic of Moldova during the above mentioned periods comprises 13,930 pieces.
8. The technical characteristics of each type of anti-personnel mine produced, to the extent known, and those currently owned or possessed by the Republic of Moldova, giving, where reasonably possible, such categories of information as may facilitate identification and clearance of anti-personnel mines; at a minimum, this information shall include the dimensions, fusing, explosive content, metallic content, colour photographs and other information which may facilitate mine clearance; and the measures taken to provide an immediate and effective warning to the population in relation to all areas identified under paragraph 2 of Article 5.
<table>
<thead>
<tr>
<th>Mine name and type</th>
<th>Explosive content</th>
<th>Mine description, operation and hazards</th>
<th>Mine Photo</th>
</tr>
</thead>
</table>
| OZM-72 | Main charge is 700 g of TNT plus a 23 g Tetryl booster | **Description**
The OZM-72 is cylindrical, steel bodied, bounding mine which is designed to wound or kill by fragmentation. It is a progression of the OZM family and is larger and more lethal than the earlier OZM models. It is made of steel and has a more squat appearance than the earlier OZM models. The bottom edge of the mine body has a very obvious crimp in it. On the top of the mine in the center is a detonator retaining plug with a wingnut type screw. Beside this is a threaded fuze adapter which will accept any fuze with a 8mm coarse thread. This includes control plugs for the VP13 seismic controller or the MVE-72 breakwire fuze. The OZM-72 contains 700g of explosive to propel 2400 steel rod fragments to a lethal radius of 25 meters. The detonation height is controlled by a wire lanyard which is 0.9 meters long. The OZM-72's primary fuze is the MUV series mechanical pull attached to a 15 meter long tripwire. It has however been observed with the MVE-72 electric breakwire or attached to the VP13 seismic controller in clusters of five. The mine can be located visually or using metal detectors under most field conditions. When set up with an MUV series pull fuze the mine can be defeated by blast overpressure from explosive breaching systems such as the Giant Viper or MICLIC. Alternate fuzing may give it limited resistance to blast overpressure breaching systems.

Operation
Pull on a trip wire removes a retaining pin from the MUV series fuze and releases a spring loaded firing pin to snap onto a percussion cap. The percussion cap sends a spark down a flash tube which ignites the expelling charge. The expelling charge fires the mine body upward, the body is attached to the base by a wire lanyard 1 meter long. When the wire is extended to its maximum length it releases a spring loaded firing pin inside the mine body which strikes the detonator and... | @Mine Photo.png |
<table>
<thead>
<tr>
<th>Mine name and type</th>
<th>Explosive content</th>
<th>Mine description, operation and hazards</th>
<th>Mine Photo</th>
</tr>
</thead>
</table>
| MON 50 | 700 g of RDX (PVV-5A) explosive | **Description**
The MON 50 is a claymore shaped, plastic bodied, directional A pers mine which is designed to wound or kill by fragmentation. It has folding scissor type legs for supporting and aiming, but it also has an attachment point on the bottom for connecting a special clamp/spike which can be attached to wood, metal etc. It has a peep sight centered on the top which is flanked by two detonator cavities. The mine contains 700g of RDX (PVV-5A) to propel approximately 500 fragments to a lethal range of 50 meters in a 54' arc (spread of 45 meters at 50 meter range). The fragments can be steel balls (540) or short steel rods (485) depending on the variant. The MON 50 is usually command actuated using a PN manual inductor and an EDP-R electric detonator. It can also be actuated by a variety of BT switches including the MUV series pull; the MVE-72 electric breakwire; or the VP13 seismic controller. The MON 50 will usually be mounted above ground level on the surface or up in trees to give the greatest dispersion of fragments. It is waterproof and will function effectively from +50 to -50'C (the MON 50 can be |
buried in snow as long as the pack in front of the mine doesn't exceed 10 cm, any more will greatly reduce the mine effectiveness). The mine can be located visually or with metal detectors under most field conditions. Depending on its actuation method the MON 50 may be resistant to blast overpressure from explosive breaching systems like the Giant Viper and MICLIC.

Operation

The method of operation for the MON 50 is totally dependant on the fuze system chosen by the user (command or BT actuation). Once the fuze has been actuated the detonator (either the EDP-R electric or the ZT non-electric) will function and carry on the explosive train to the main charge of 700g of explosive. The explosive detonates and propels approximately 500 steel fragments to a lethal range of 50 meters.

Hazards

The MON 50 is known to be used with the VP13 seismic controller which prevents close approach for any clearance operations. If the mine is encountered with any type of electrical wires running from it, secure both ends of the wire before approaching the mine. On detonation the mine will normally propel lethal fragmentation to a range between 40 and 60 meters. The actual hazard range for these types of mines can be as high as 300 metres (this is directly in front of the mine, fragmentation range and density drop off to 125 meters to the sides and rear of these mines). Always be alert for well concealed blast mines laid along tripwires (don't get tripwire fixation).
<table>
<thead>
<tr>
<th>Mine name and type</th>
<th>Explosive content</th>
<th>Mine description, operation and hazards</th>
<th>Mine Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON 100</td>
<td>2 kg TNT</td>
<td>Description
The MON 100 is a circular, sheet metal bodied, directional A pers mine which is designed to wound or kill by fragmentation. The mine resembles a large bowl. The mine body has a smooth, well finished appearance with a cloth handle mounted on the upper edge, it is usually attached to a mounting shackle by wing nuts on either side of the mine body (the shackle is connected to a spike for securing the mine to buildings, trees etc.). The concave face of the MON 100 has a detonator cavity in its center (this is the side aimed at the target). The mine contains 2 kg of explosive to propel 400 steel rod fragments to a lethal range of 100 meters, at maximum range the spread of the fragmentation is 9.5 meters. The mine alone weighs 5 kg but with the shackle and mounting spike the weight is 7.53 kg. The MON 100 can be command actuated using a PN manual inductor attached by demolition cable to an EDP-R electric detonator. It can also be actuated by a variety of BT switches including the MUV series pull; the MVE-72 electric breakwire; or the VP13 seismic controller. The MON 100 will usually be mounted above ground level on the surface or up in trees to give the greatest dispersion of fragments. The mine can be located visually or with metal detectors under most field conditions. Depending on its actuation method the MON 100 may be resistant to blast overpressure from explosive breaching systems like the Giant Viper and</td>
<td></td>
</tr>
</tbody>
</table>

Operation

The method of operation for the MON 100 is totally dependant on the fuze system chosen by the user (command or BT actuation). Once the fuze has been actuated the detonator (either the EDP-R electric or the ZT non-electric) will function and carry on the explosive train to the main charge of 2 kg of explosive. The explosive detonates and propels approximately 400 steel fragments to a lethal range of 100 meters.

Hazards

The MON 100 is known to be used with the VP13 seismic controller which prevents close approach for any clearance operations. If the mine is encountered with any type of electrical wires running from it, secure both ends of the wire before approaching the mine. On detonation the mine will normally propel lethal fragmentation to a range between 75 and 125 meters. The actual hazard range for this mines can be as high as 160 metres (this is directly in front of the mine, fragmentation range and density drop off to 125 meters to the sides and rear of these mines). Always be alert for well concealed blast mines laid along tripwires (don't get tripwire fixation).