Potential Public Health Use of Gene Drive Approaches to Reduce Vector-Borne Disease

Gene Drives and Engineered Ecology
Global Forum on Scientific Advances Important to the BWC
2 December 2019
New tools are needed to stop vector-borne diseases

Vector-borne diseases kill 700,000 people per year

Existing tools are important but control is expensive

Over 200 million malaria cases per year, >90% in Africa

>$3B per year is spent on malaria control; still not enough
Gene drive approaches may help prevent disease

Less transmission of disease

- Fewer vectors over time...
- ... or they can't carry disease

Spread through mating lowers costs

- Simulated gene drive spread (purple)
- ~100 km

Gene drive is specific to vectors

- Only 5 main species transmit malaria in Africa
- 3500 other mosquito species, millions of insect species
Progress has been impressive; challenges remain

<table>
<thead>
<tr>
<th>Progress</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Gene drive demonstrated in malaria vectors in the lab</td>
<td>▪ Translation of lab results to a wide range of environments</td>
</tr>
<tr>
<td>▪ Lab mosquito populations suppressed or altered to prevent disease transmission</td>
<td>▪ Potential persistence and/or spread of field studies</td>
</tr>
<tr>
<td>▪ Burkina Faso approved genetically sterile male mosquitoes for study</td>
<td>▪ Adapting legal and policy frameworks developed for crops to vectors</td>
</tr>
</tbody>
</table>
Risks are being systematically identified and assessed

Goal and risk identification

Systematic risk assessment
Our goal is to provide new **options** for disease control

Inputs
Scientific and technical understanding (lab, field, modeling, strategy)

Informed decisions
Regulatory and policy decisions at the national, regional and local levels

Results
Improved disease control and elimination with fewer resources