PRINT PAGE SHARE THIS ACCESSIBILITY AT UNOG A A A A The United Nations in the Heart of Europe




ExpandIn Focus

ExpandResources & Services

ExpandThe Director General

ExpandAbout UNOG

ExpandPalais des Nations


Disarmament

Generic Preventive Measures - Checklist

To assist States with the implementation of Article 9 and Part 3 of the Technical Annex, in 2009 the then Coordinator on Generic Preventive Measures, Colonel Jean-Christophe Le Roux of France, developed a questionnaire which serves as a checklist for States to consider when they are developing procedures, guidelines or regulations on the implementation of generic preventive measures. The checklist has been reproduced in full below. It can also be found in Protocol V document CCW/P.V/CONF/2010/6/Add.1, 11 November 2010. Essentially the checklist is a tool to facilitate the implementation of generic preventive measures. While it does not have any legal status, it is hoped that the checklist will clarify various issues, establish best practises and serve to monitor and improve the implementation of generic preventive measures at the national level.

Show details for 1. Specification1. Specification

Show details for 2. Concept2. Concept

Hide details for 3. Development3. Development
(a) Does the design work include features and parameters to enable munitions products to meet the specified requirements for reliability, safety, storage, transport and handling, throughout the whole life cycle of munitions (e.g. : including operational usage and disposal)?
(b) Are munitions designed to maintain the required level of reliability in all specified environmental and foreseeable operational conditions throughout all life cycle stages?
(c) Is the quality of the chosen components (materials, mechanical parts, explosive materials, compatibility and time degradation of pyrotechnic materials, electronic parts, battery…) optimised against the performance and the specified UXO rate?
(d) Where appropriate and technically feasible, does the design permit the testing of critical functions, which may lead to UXO prior to use (by user or BIT)?
(e) Does the fusing system incorporate design features, which definitively limit the foreseen active time of munitions: self-destruction mechanism, self-deactivating feature (e.g. Electrical Firing Energy Dissipation), self-neutralisation mechanism (e.g. disarming, sterilisation), and self-disruption?
(f) Are features or functions, related with safety, tested at a 100% level?
(g) Does the design of the fusing system include features that facilitate, as applicable, effective automated and/or manual quality assurance methods, tests and inspections?
(h) Are munitions designed to achieve the specified lifetime without unacceptable degradation of reliability and safety?
(i) Does the design of munitions include features for health monitoring that facilitate, as applicable, a prognostics and diagnostics capability, thereby assuring the effectiveness and reliability of munitions throughout the lifecycle?
(j) Are the lot numbers marked on munitions?
(k) Has a reliability and safety analysis been performed e.g. are potential malfunctions of munitions analysed and is the design improved and verified by analysis and specific reliability and safety tests?
(l) Are critical functions and characteristics, with respect to UXO, defined?
(m) Are quantitative reliability and safety requirements assessed by analysis and tests?
(n) If, in munitions, there are software or programmable components, do you refer to international standards? Do you define, plan and perform specific activities to assure reliability and safety?
(o) Has process analysis been realised to assure the greatest reliability of munitions? (e.g. FMECA process)

Show details for Reducing UXO sensitivityReducing UXO sensitivity

Show details for Reducing potential civilian casualties from ERWReducing potential civilian casualties from ERW

Show details for Qualification workQualification work

Show details for 4. Production4. Production

Show details for 5. Utilisation - 5.1 Storage5. Utilisation - 5.1 Storage

Show details for 5.2 Transportation and handling5.2 Transportation and handling

Show details for 5.3 Training5.3 Training

Show details for 5.4 Using5.4 Using

Show details for 6. Support - 6.1 maintenance of weapon system, munitions and packaging6. Support - 6.1 maintenance of weapon system, munitions and packaging

Show details for 6.2 In service surveillance6.2 In service surveillance

Show details for 6.3 Documentation6.3 Documentation

Show details for 7. Disposal Identification7. Disposal Identification

Show details for ProceduresProcedures

Show details for Information to other partiesInformation to other parties

Hide details for 8. COTS and MOTS8. COTS and MOTS
(a) Is the initial specification and qualification report or matrix known to the new customer and is it compliant with his own requirements?
(b) Are there some initial deviations from the initial specification?
(c) Are there some user’s documentations which define recommendation for storage, transport, handling, use, training, monitoring…?
(d) Are these recommendations applied?
(e) In case of modification, is there an analysis with justifications to determine which analysis and trials are necessary for munitions to perform again?
(f) If munitions are already in military storage for a few years, are there some guarantees, justifications (by analysis or trials) about reliability and safety?

Show details for 9. Others questions for storage related to safety9. Others questions for storage related to safety

List of abbreviations
ALARP: As Low As is Reasonably Practicable
AXO: Abandoned explosive Ordnance
BIT: Built In Test
CCW: Certain Conventional Weapons
COTS: Commercial Off The Shelf
EOD: Explosive Ordnance Disposal
ERW: Explosive Remnants of War (see definition in convention on CCW)
HCP: High Contracting Party
MOTS: Modified Off The Shelf
RFID: Radio Frequency Identification Device
UXO: Unexploded Ordnance (see definition in convention on CCW)


Events & Meetings